Copied to
clipboard

G = C42.395D4order 128 = 27

28th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.395D4, C23⋊C816C2, C24.2(C2×C4), (C22×D4).5C4, (C22×Q8).4C4, C4.4(C4.D4), C42.6C423C2, C42.12C43C2, C22.10(C8○D4), C22⋊C8.125C22, C23.170(C22×C4), (C2×C42).151C22, (C22×C4).433C23, C2.9(C23.C23), (C2×C22⋊C4).8C4, C2.7(C2×C4.D4), (C2×C4).1130(C2×D4), (C22×C4).10(C2×C4), (C2×C4.4D4).1C2, (C2×C4).163(C22⋊C4), C2.7((C22×C8)⋊C2), (C2×C22⋊C4).87C22, C22.151(C2×C22⋊C4), SmallGroup(128,201)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.395D4
C1C2C22C2×C4C22×C4C2×C42C2×C4.4D4 — C42.395D4
C1C2C23 — C42.395D4
C1C22C2×C42 — C42.395D4
C1C2C22C22×C4 — C42.395D4

Generators and relations for C42.395D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b, ab=ba, cac-1=ab2, ad=da, cbc-1=a2b, bd=db, dcd-1=b-1c3 >

Subgroups: 308 in 128 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C4.4D4, C22×D4, C22×Q8, C23⋊C8, C42.12C4, C42.6C4, C2×C4.4D4, C42.395D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.D4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2, C23.C23, C2×C4.D4, C42.395D4

Smallest permutation representation of C42.395D4
On 32 points
Generators in S32
(1 15 32 17)(2 12 25 22)(3 9 26 19)(4 14 27 24)(5 11 28 21)(6 16 29 18)(7 13 30 23)(8 10 31 20)
(1 3 5 7)(2 27 6 31)(4 29 8 25)(9 11 13 15)(10 22 14 18)(12 24 16 20)(17 19 21 23)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 3 18 5 10 7 22)(2 15 27 9 6 11 31 13)(4 19 29 21 8 23 25 17)(12 32 24 26 16 28 20 30)

G:=sub<Sym(32)| (1,15,32,17)(2,12,25,22)(3,9,26,19)(4,14,27,24)(5,11,28,21)(6,16,29,18)(7,13,30,23)(8,10,31,20), (1,3,5,7)(2,27,6,31)(4,29,8,25)(9,11,13,15)(10,22,14,18)(12,24,16,20)(17,19,21,23)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,3,18,5,10,7,22)(2,15,27,9,6,11,31,13)(4,19,29,21,8,23,25,17)(12,32,24,26,16,28,20,30)>;

G:=Group( (1,15,32,17)(2,12,25,22)(3,9,26,19)(4,14,27,24)(5,11,28,21)(6,16,29,18)(7,13,30,23)(8,10,31,20), (1,3,5,7)(2,27,6,31)(4,29,8,25)(9,11,13,15)(10,22,14,18)(12,24,16,20)(17,19,21,23)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,3,18,5,10,7,22)(2,15,27,9,6,11,31,13)(4,19,29,21,8,23,25,17)(12,32,24,26,16,28,20,30) );

G=PermutationGroup([[(1,15,32,17),(2,12,25,22),(3,9,26,19),(4,14,27,24),(5,11,28,21),(6,16,29,18),(7,13,30,23),(8,10,31,20)], [(1,3,5,7),(2,27,6,31),(4,29,8,25),(9,11,13,15),(10,22,14,18),(12,24,16,20),(17,19,21,23),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,3,18,5,10,7,22),(2,15,27,9,6,11,31,13),(4,19,29,21,8,23,25,17),(12,32,24,26,16,28,20,30)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I4J4K4L8A···8H8I8J8K8L
order122222224···444448···88888
size111122882···244884···48888

32 irreducible representations

dim111111112244
type+++++++
imageC1C2C2C2C2C4C4C4D4C8○D4C4.D4C23.C23
kernelC42.395D4C23⋊C8C42.12C4C42.6C4C2×C4.4D4C2×C22⋊C4C22×D4C22×Q8C42C22C4C2
# reps141114224822

Matrix representation of C42.395D4 in GL6(𝔽17)

0130000
400000
0013200
000400
00015016
000910
,
1300000
0130000
0041500
0001300
000201
0008160
,
1500000
020000
00150150
00901316
000120
0016080
,
020000
1500000
00150150
0000131
000120
000080

G:=sub<GL(6,GF(17))| [0,4,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,0,0,0,2,4,15,9,0,0,0,0,0,1,0,0,0,0,16,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,15,13,2,8,0,0,0,0,0,16,0,0,0,0,1,0],[15,0,0,0,0,0,0,2,0,0,0,0,0,0,15,9,0,16,0,0,0,0,1,0,0,0,15,13,2,8,0,0,0,16,0,0],[0,15,0,0,0,0,2,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,1,0,0,0,15,13,2,8,0,0,0,1,0,0] >;

C42.395D4 in GAP, Magma, Sage, TeX

C_4^2._{395}D_4
% in TeX

G:=Group("C4^2.395D4");
// GroupNames label

G:=SmallGroup(128,201);
// by ID

G=gap.SmallGroup(128,201);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,723,184,1123,851,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽